Paper-I

Electrical Circuits–Theory and Applications

Circuit componets; network graphs; KCL, KVL; circuit analysis methods : nodal analysis, mesh analysis; basic network theorems and applications; transient analysis : RL, RC and RLC circuits; sinusoidal steady state analysis; resonant circuits and applications; coupled circuits and applications; balanced 3-phase circuits. Two-port networks, driving point and transfer functions; poles and zeros of network functions. Elements of networks synthesis. Filter-theory : design and applications. Active filters. Circuit simulation : Input formats; methods of education formulation; solution of equations; output formats; SPICE.

Signals & Systems

Representation of continuous-time and discrete-time signals & systems; LTI systems; convolution; impulse response; time-domain analysis of LTI systems based on convolution and differential/difference equations. Fourier transform, Laplace transform, Z-transform, Transfer function. Sampling and recovery of signals DFT, FFT Processing of analog signals through discrete-time systems.

E.M. Theory

Maxwell's equations, wave propagation in bounded media. Boundary conditions, reflaction and refraction of plane waves. Transmission line : Distributed parameter circuits, travelling and standing waves, impedance matching, Smith chart. Waveguides : parallel plane guide, TE, TM and TEM waves, rectangular and cylindrical wave guides, resonators. Planar transmission lines; stripline, microstripline.

Analog Electronics

Characteristics and equivalent circuits (large and small-signal) of Diode, BJT, JFET and MOSFET. Diode circuits : clipping, clamping, rectifier. Biasing and bias stability. FET amplifiers. Current mirror; Amplifiers : single and multi-stage, differential, operational, feedback and power. Analysis of amplifiers; frequency-response of amplifiers. OPAMP circuits. Filters; sinusoidal oscillators : criterion for oscillation; single-transistor and OPAMP configurations. Function generators and wave-shaping circuits. Power supplies.

Digital Electronics

Boolean algebra; minimisation of Boolean functions; logic gates; digital IC families (DTL, TTL, ECL, MOS, CMOS). Combinational circuits : arithmetic circuits, code converters, multiplexers and decoders. Sequential circuits : latches and flip-flops, counters and shift-registers. Comparators, timers, multivibrators. Sample and hold

circuits, ADCs and DACs. Semiconductor memories. Logic implementation using programmable devices (ROM, PLA, FPGA).

Energy Conversion

Principles of electromechanical energy conversion : Torque and emf in rotating machines. DC machines : charateristics and performance analysis; starting and speed control of motors.

Transformers : principles of operation and analysis; regulation, efficiency; 3-phase transformers. 3-phase induction machines and synchronous machines : characteristics and preformance analysis; speed control. Special machines : Stepper motors, brushless dc motors, permanent magnet motors single-phase motors; FHP.

Power Electronics and Electric Drives :

Semiconductor power devices : diode, transistor, thyristor, triac, GTO and MOSFET– static characteristics and principles of operation; triggering circuits; phase control rectifiers; bridge converters : fully-controlled and half-controlled; principles of thyristor choppers and inverters; basic concepts of speed control of dc and ac motor drives applications of variable-speed drives.

Analog Communication

Random variables : continuous, discrete; probability, probability functions. Statististical averages; probability models; Random signals and noise : white noise, noise equivalent bandwidth; signal transmission with noise; signal to noise ratio. Linear CW modulation : Amplitude modulation : DSB, DSB-SC and SSB. Modulators and Demodulators; Phase and Frequency modulation : PM & FM signals; narrowband FM; generation & detection of FM and PM, Deemphasis, Preemphasis. CW modulation system : Superhetrodyne receivers, AM receivers, communication receivers, FM receivers, phase locked loop, SSB receiver Signal to noise ratio calculation for AM and FM receivers.

Microwaves and Antenna

Electromagnetic radiation, Propagation of waves : ground waves, sky wave, space wave, tropospheric scatter propagation. Extraterrestrial communications. Antenna : Various types, gain, resistance, band-width, beamwidth and polarization, effect of ground. Antenna coupling; high frequency antennas; microwave antennas; special purpose antennas. Microwave Services : Klystron, magnetron, TWT, gun diodes, Impatt, Bipolar and FETs, Microwave integrated circuits. Microwave measurements.

Paper-II

Control Systems

Elements of control systems; block-diagram representation; open-loop & closed-loop systems; principles and applications of feed-back. LTI systems : time-domain and transform-domain analysis. Stability : Routh Hurwitz criterion, root-loci, Nyquist's criterion, Bode-plots, Design of lead-lad compensators. Proportional, PI, PID controllers. State-variable representation and analysis of control systems. Principles of discrete-control systems.

Electrical Engineering Materials

Electrical/electronic behaviour of materials : conductivity; free-electrons and bandtheory; intrinsic and extrinsic semiconductor, p-n junction; solar cells, superconductivity. Dielectric behaviour of materials; polarization phenomena; piezoelectric phenomena. Magnetic materials : behaviour and application. Photonic materials : refractive index, absorption and emission of light, optical fibres, lasers and opto-electronic materials.

Microprocessors and microcomputers

8-bit microprocessor : architecture, CPU, module design, memory interfacing, I/O, Peripheral controllers, Multiprocessing. IBM PC architecture : overview, introduction to DOS, Advanced microprocessors.

Measurement and Instrumentation

Error analysis; measurement of current voltage, power, energy, power-factor, resistance, inductance, capacitance and frequency; bridge measurement. Electronic measuring instruments : multimeter, CRO, digital voltmeter, frequency counter, Q-meter, spectrum-analyser, distortion-meter. Transducers : thermocouple, thermistor, LVDT, strain-guage, piezo-electric crystal. Use of transducers in measurements of non-electrical quantities. Data-acquisition systems.

IC Technology

Overview of IC Technology. Unit-steps used in IC fabrication : wafer cleaning, photolithography, wet and dry etching, oxidation, diffusion, ion-implantation, CVD and LPCVD techniques for deposition of poly-silicon, silicon, silicon-nitride and silicon dioxide; metallisation and passivation.

Power Systems : Analysis and Control

Steady-state performance of overhead transmission lines and cables; principles of active and reactive power transfer and distribution; per-unit quantities; bus admittance and impedance materices; load flow; voltage control and power factor

correction; economic operation; symmeterical components, analysis of symmetrical and unsymmetrical faults. Concept of system stability : swing curves and equal area criterion. Static VAR system. Basic concepts of HVDC transmission; FACTS. Computer control and Automation : Introduction to energy control centres; various states of a power system; SCADA systems and RTUs. Active power control : Speed control of generators, tie-line control, frequency control. Economic dispatch.

Power system protection

Principles of overcurrent, differential and distance protection. Concept of solid state relays. Circuit brakers. Computer aided protection : Introduction; line bus, generator, transformer protection; numeric relays and application of DSP to protection.

Non-conventional Energy Sources and Energy Management

Introduction to the energy problem; difficulties with conventional energy sources. Wind-Energy : Basics of Wind turbine aerodynamics; wind-energy conversion systems and their integration into electrical grid. Solar-Energy : Thermal conversion : photo-voltaic conversion. Wave-energy. Importance of Energy Management : Energy audit; energy economics : discount rate, payback period, internal rate of return, life cycle costing.

Digital Communiation

Pulse code modulation (PCM), diferential pulse code modulation (DPCM), delta modulation (DM), Digital modulation and demodulation schemes : amplitude, phase and frequency keying schemes (ASK, PSK, FSK). Error control coding : error detection and correction, linear block codes, convolution codes. Information measure and source coding. Data networks, 7-layer architecture.

Satellite Communication, Radar and TV

Satellite Communication : General overview and technical characteristics, earth station equipment, satellite link design, CNR of Satellite system. Radar : Basic principles, Pulsed systems : CW Doppler radar, FMCW radar, Phase array radars. Television Systems : Television systems and standards, Black-and White-and Colour-TV transmission and receiver systems.

Fibre Optic System

Multiplexing : Time division multiplexing, Frequency Division multiplexing. Optical properties of materials : Refractive index absorption and emission of light, optical fibres, lasers and optoelectronic materials Fibre optic links.